Содержимое
Термін «періодичність» вказує на регулярне повторення значень функції через рівні проміжки часу. Аналогічно до інших тригонометричних функцій, функція синуса виявляє цю характеристику. Іншими словами, графік функції синуса має регулярний цикл, і його інтервал становить 2⋅π.
Наприклад, розглядаючи значення sin(π), ми отримуємо 0. При додаванні до цього значення 2⋅π, ми отримаємо sin(π+2⋅π), що також дорівнює 0. Ця закономірність є невід’ємною характеристикою графіка синусоїди, і цей процес повторюється з кожним наступним додаванням 2⋅π до вхідних значень.
Основною функцією синуса є y=sin(x). Оскільки цю функцію можна обчислити для будь-якого дійсного числа, функція синуса визначена для всіх дійсних чисел. Період функції синус можна чітко побачити на її графіку, оскільки це відстань між «еквівалентними» точками.
Оскільки графік y=sin(x) виглядає як єдиний шаблон, який повторюється знову і знову, ми можемо розглядати період як відстань на осі OX до того, як графік почне повторюватися.
Дивлячись на графік, ми бачимо, що графік повторюється після 2⋅π. Це означає, що функція є періодичною з періодом 2⋅π. В одиничному колі 2⋅π дорівнює одному повному оберту навколо кола.
Будь-яка величина, більша за 2⋅π, означає, що ми здійснюємо повторний оборот. Це пояснює, чому значення функції однакове кожні 2⋅π.
Як уже зазначалося вище, період функції y=sin(x) дорівнює 2⋅π, але якщо x помножити на константу, період синуса може змінитися.
Якщо множник більше 1, це пришвидшить функцію, зменшивши період. Це означає, що функція почне повторюватися швидше. Наприклад, у функції y=sin(2⋅x) «швидкість» подвоюється, і період зменшується до π.
З іншого боку, якщо множник знаходиться в діапазоні від 0 до 1, це сповільнить функцію і збільшить період, оскільки повторення значень функції буде відбуватися повільніше. Наприклад, у функції y=sin(x/2) «швидкість» зменшується наполовину, і період цієї функції стає 4⋅π.
Ці зміни в періоді дозволяють нам керувати тим, як швидко чи повільно функція синуса повторюється, що відкриває нові можливості для її застосування.
Щоб знайти період функції синус, необхідно розглянути коефіцієнт, який множиться на x всередині функції. Отже, якщо у нас є рівняння у формі y=sin(B⋅x), ми маємо таку формулу:
У знаменнику використовується абсолютне значення B, що означає, що ми беремо додатну версію числа, навіть якщо B є від’ємним числом.
Зазначимо, що ця формула залишається застосовною навіть у випадках, коли функція синуса має складніші варіації, наприклад y=3⋅sin(2⋅x+4). Під час розрахунку періоду важливий лише коефіцієнт при x, тому маємо:
Те, що ви дізналися про період функції синус, використовується для розв’язування наступних прикладів. Спробуйте розв’язати завдання самостійно перед тим, як перевіряти відповіді.
Отже, використовуючи формулу періоду зі значенням |B|=3, маємо:
Таким чином, період функції синус дорівнює 2π/3.
Для знаходження періоду використовуємо значення |B|=4:
Отже, період функції синус дорівнює π/2.
Використовуючи значення |B|=1/4 у формулі T=2π/|B|, отримаємо:
Таким чином, період функції синус дорівнює 8π.
Завершили вивчення основ про період функції синус? Час розглянути ще кілька захоплюючих тем, які глибше розкриють сутність функції синус та її застосування:
В данной таблице представлены значения синусов от 0° до 360°. Таблица синусов нужна, когда у вас под рукой нет калькулятора. Чтобы узнать, чему равен синус угла, просто найдите нужный градус в таблице. Для начала короткая версия таблицы.
sin(1°) | 0.0175 |
sin(2°) | 0.0349 |
sin(3°) | 0.0523 |
sin(4°) | 0.0698 |
sin(5°) | 0.0872 |
sin(6°) | 0.1045 |
sin(7°) | 0.1219 |
sin(8°) | 0.1392 |
sin(9°) | 0. 1564 |
sin(10°) | 0.1736 |
sin(11°) | 0.1908 |
sin(12°) | 0.2079 |
sin(13°) | 0.225 |
sin(14°) | 0.2419 |
sin(15°) | 0.2588 |
sin(16°) | 0.2756 |
sin(17°) | 0.2924 |
sin(18°) | 0.309 |
sin(19°) | 0.3256 |
sin(20°) | 0.342 |
sin(21°) | 0.3584 |
sin(22°) | 0.3746 |
sin(23°) | 0.3907 |
sin(24°) | 0.4067 |
sin(25°) | 0.4226 |
sin(26°) | 0.4384 |
sin(27°) | 0.454 |
sin(28°) | 0.4695 |
sin(29°) | 0.4848 |
sin(30°) | 0.5 |
sin(31°) | 0.515 |
sin(32°) | 0.5299 |
sin(33°) | 0.5446 |
sin(34°) | 0.5592 |
sin(35°) | 0.5736 |
sin(36°) | 0.5878 |
sin(37°) | 0.6018 |
sin(38°) | 0.6157 |
sin(39°) | 0.6293 |
sin(40°) | 0.6428 |
sin(41°) | 0.6561 |
sin(42°) | 0.6691 |
sin(43°) | 0.682 |
sin(44°) | 0.6947 |
sin(45°) | 0.7071 |
sin(46°) | 0.7193 |
sin(47°) | 0.7314 |
sin(48°) | 0.7431 |
sin(49°) | 0.7547 |
sin(50°) | 0.766 |
sin(51°) | 0.7771 |
sin(52°) | 0.788 |
sin(53°) | 0.7986 |
sin(54°) | 0.809 |
sin(55°) | 0.8192 |
sin(56°) | 0.829 |
sin(57°) | 0.8387 |
sin(58°) | 0.848 |
sin(59°) | 0.8572 |
sin(60°) | 0.866 |
sin(61°) | 0.8746 |
sin(62°) | 0.8829 |
sin(63°) | 0.891 |
sin(64°) | 0.8988 |
sin(65°) | 0.9063 |
sin(66°) | 0.9135 |
sin(67°) | 0.9205 |
sin(68°) | 0.9272 |
sin(69°) | 0.9336 |
sin(70°) | 0.9397 |
sin(71°) | 0.9455 |
sin(72°) | 0.9511 |
sin(73°) | 0.9563 |
sin(74°) | 0.9613 |
sin(75°) | 0.9659 |
sin(76°) | 0.9703 |
sin(77°) | 0.9744 |
sin(78°) | 0.9781 |
sin(79°) | 0.9816 |
sin(80°) | 0.9848 |
sin(81°) | 0.9877 |
sin(82°) | 0.9903 |
sin(83°) | 0.9925 |
sin(84°) | 0.9945 |
sin(85°) | 0.9962 |
sin(86°) | 0.9976 |
sin(87°) | 0.9986 |
sin(88°) | 0.9994 |
sin(89°) | 0.9998 |
sin(90°) | 1 |
sin(91°) | 0.9998 |
sin(92°) | 0.9994 |
sin(93°) | 0.9986 |
sin(94°) | 0.9976 |
sin(95°) | 0.9962 |
sin(96°) | 0.9945 |
sin(97°) | 0.9925 |
sin(98°) | 0.9903 |
sin(99°) | 0.9877 |
sin(100°) | 0.9848 |
sin(101°) | 0.9816 |
sin(102°) | 0.9781 |
sin(103°) | 0.9744 |
sin(104°) | 0.9703 |
sin(105°) | 0.9659 |
sin(106°) | 0.9613 |
sin(107°) | 0.9563 |
sin(108°) | 0.9511 |
sin(109°) | 0.9455 |
sin(110°) | 0.9397 |
sin(111°) | 0.9336 |
sin(112°) | 0.9272 |
sin(113°) | 0.9205 |
sin(114°) | 0.9135 |
sin(115°) | 0.9063 |
sin(116°) | 0.8988 |
sin(117°) | 0.891 |
sin(118°) | 0.8829 |
sin(119°) | 0.8746 |
sin(120°) | 0.866 |
sin(121°) | 0.8572 |
sin(122°) | 0.848 |
sin(123°) | 0.8387 |
sin(124°) | 0.829 |
sin(125°) | 0.8192 |
sin(126°) | 0.809 |
sin(127°) | 0.7986 |
sin(128°) | 0.788 |
sin(129°) | 0.7771 |
sin(130°) | 0.766 |
sin(131°) | 0.7547 |
sin(132°) | 0.7431 |
sin(133°) | 0.7314 |
sin(134°) | 0.7193 |
sin(135°) | 0.7071 |
sin(136°) | 0.6947 |
sin(137°) | 0.682 |
sin(138°) | 0.6691 |
sin(139°) | 0.6561 |
sin(140°) | 0.6428 |
sin(141°) | 0.6293 |
sin(142°) | 0.6157 |
sin(143°) | 0.6018 |
sin(144°) | 0.5878 |
sin(145°) | 0.5736 |
sin(146°) | 0.5592 |
sin(147°) | 0.5446 |
sin(148°) | 0.5299 |
sin(149°) | 0.515 |
sin(150°) | 0.5 |
sin(151°) | 0.4848 |
sin(152°) | 0.4695 |
sin(153°) | 0.454 |
sin(154°) | 0.4384 |
sin(155°) | 0.4226 |
sin(156°) | 0.4067 |
sin(157°) | 0.3907 |
sin(158°) | 0.3746 |
sin(159°) | 0.3584 |
sin(160°) | 0.342 |
sin(161°) | 0.3256 |
sin(162°) | 0.309 |
sin(163°) | 0.2924 |
sin(164°) | 0.2756 |
sin(165°) | 0.2588 |
sin(166°) | 0.2419 |
sin(167°) | 0.225 |
sin(168°) | 0.2079 |
sin(169°) | 0.1908 |
sin(170°) | 0.1736 |
sin(171°) | 0.1564 |
sin(172°) | 0.1392 |
sin(173°) | 0.1219 |
sin(174°) | 0.1045 |
sin(175°) | 0.0872 |
sin(176°) | 0.0698 |
sin(177°) | 0.0523 |
sin(178°) | 0.0349 |
sin(179°) | 0.0175 |
sin(180°) | 0 |
sin(181°) | -0.0175 |
sin(182°) | -0.0349 |
sin(183°) | -0.0523 |
sin(184°) | -0.0698 |
sin(185°) | -0.0872 |
sin(186°) | -0.1045 |
sin(187°) | -0.1219 |
sin(188°) | -0.1392 |
sin(189°) | -0.1564 |
sin(190°) | -0.1736 |
sin(191°) | -0.1908 |
sin(192°) | -0.2079 |
sin(193°) | -0.225 |
sin(194°) | -0.2419 |
sin(195°) | -0.2588 |
sin(196°) | -0.2756 |
sin(197°) | -0.2924 |
sin(198°) | -0.309 |
sin(199°) | -0.3256 |
sin(200°) | -0.342 |
sin(201°) | -0.3584 |
sin(202°) | -0.3746 |
sin(203°) | -0.3907 |
sin(204°) | -0.4067 |
sin(205°) | -0.4226 |
sin(206°) | -0.4384 |
sin(207°) | -0.454 |
sin(208°) | -0.4695 |
sin(209°) | -0.4848 |
sin(210°) | -0.5 |
sin(211°) | -0.515 |
sin(212°) | -0.5299 |
sin(213°) | -0.5446 |
sin(214°) | -0.5592 |
sin(215°) | -0.5736 |
sin(216°) | -0.5878 |
sin(217°) | -0.6018 |
sin(218°) | -0.6157 |
sin(219°) | -0.6293 |
sin(220°) | -0.6428 |
sin(221°) | -0.6561 |
sin(222°) | -0.6691 |
sin(223°) | -0.682 |
sin(224°) | -0.6947 |
sin(225°) | -0.7071 |
sin(226°) | -0.7193 |
sin(227°) | -0.7314 |
sin(228°) | -0.7431 |
sin(229°) | -0.7547 |
sin(230°) | -0.766 |
sin(231°) | -0.7771 |
sin(232°) | -0.788 |
sin(233°) | -0.7986 |
sin(234°) | -0.809 |
sin(235°) | -0.8192 |
sin(236°) | -0.829 |
sin(237°) | -0.8387 |
sin(238°) | -0.848 |
sin(239°) | -0.8572 |
sin(240°) | -0.866 |
sin(241°) | -0.8746 |
sin(242°) | -0.8829 |
sin(243°) | -0.891 |
sin(244°) | -0.8988 |
sin(245°) | -0.9063 |
sin(246°) | -0.9135 |
sin(247°) | -0.9205 |
sin(248°) | -0.9272 |
sin(249°) | -0.9336 |
sin(250°) | -0.9397 |
sin(251°) | -0.9455 |
sin(252°) | -0.9511 |
sin(253°) | -0.9563 |
sin(254°) | -0.9613 |
sin(255°) | -0.9659 |
sin(256°) | -0.9703 |
sin(257°) | -0.9744 |
sin(258°) | -0.9781 |
sin(259°) | -0.9816 |
sin(260°) | -0.9848 |
sin(261°) | -0.9877 |
sin(262°) | -0.9903 |
sin(263°) | -0.9925 |
sin(264°) | -0.9945 |
sin(265°) | -0.9962 |
sin(266°) | -0.9976 |
sin(267°) | -0.9986 |
sin(268°) | -0.9994 |
sin(269°) | -0.9998 |
sin(270°) | -1 |
sin(271°) | -0.9998 |
sin(272°) | -0.9994 |
sin(273°) | -0.9986 |
sin(274°) | -0.9976 |
sin(275°) | -0.9962 |
sin(276°) | -0.9945 |
sin(277°) | -0.9925 |
sin(278°) | -0.9903 |
sin(279°) | -0.9877 |
sin(280°) | -0.9848 |
sin(281°) | -0.9816 |
sin(282°) | -0.9781 |
sin(283°) | -0.9744 |
sin(284°) | -0.9703 |
sin(285°) | -0.9659 |
sin(286°) | -0.9613 |
sin(287°) | -0.9563 |
sin(288°) | -0.9511 |
sin(289°) | -0.9455 |
sin(290°) | -0.9397 |
sin(291°) | -0.9336 |
sin(292°) | -0.9272 |
sin(293°) | -0.9205 |
sin(294°) | -0.9135 |
sin(295°) | -0.9063 |
sin(296°) | -0.8988 |
sin(297°) | -0.891 |
sin(298°) | -0.8829 |
sin(299°) | -0.8746 |
sin(300°) | -0.866 |
sin(301°) | -0.8572 |
sin(302°) | -0.848 |
sin(303°) | -0.8387 |
sin(304°) | -0.829 |
sin(305°) | -0.8192 |
sin(306°) | -0.809 |
sin(307°) | -0.7986 |
sin(308°) | -0.788 |
sin(309°) | -0.7771 |
sin(310°) | -0.766 |
sin(311°) | -0.7547 |
sin(312°) | -0.7431 |
sin(313°) | -0.7314 |
sin(314°) | -0.7193 |
sin(315°) | -0.7071 |
sin(316°) | -0.6947 |
sin(317°) | -0.682 |
sin(318°) | -0.6691 |
sin(319°) | -0.6561 |
sin(320°) | -0.6428 |
sin(321°) | -0.6293 |
sin(322°) | -0.6157 |
sin(323°) | -0.6018 |
sin(324°) | -0.5878 |
sin(325°) | -0.5736 |
sin(326°) | -0.5592 |
sin(327°) | -0.5446 |
sin(328°) | -0.5299 |
sin(329°) | -0.515 |
sin(330°) | -0.5 |
sin(331°) | -0.4848 |
sin(332°) | -0.4695 |
sin(333°) | -0.454 |
sin(334°) | -0.4384 |
sin(335°) | -0.4226 |
sin(336°) | -0.4067 |
sin(337°) | -0.3907 |
sin(338°) | -0.3746 |
sin(339°) | -0.3584 |
sin(340°) | -0.342 |
sin(341°) | -0.3256 |
sin(342°) | -0.309 |
sin(343°) | -0.2924 |
sin(344°) | -0.2756 |
sin(345°) | -0.2588 |
sin(346°) | -0.2419 |
sin(347°) | -0.225 |
sin(348°) | -0.2079 |
sin(349°) | -0.1908 |
sin(350°) | -0.1736 |
sin(351°) | -0.1564 |
sin(352°) | -0.1392 |
sin(353°) | -0.1219 |
sin(354°) | -0.1045 |
sin(355°) | -0.0872 |
sin(356°) | -0.0698 |
sin(357°) | -0.0523 |
sin(358°) | -0.0349 |
sin(359°) | -0.0175 |
sin(360°) | -0 |
Существуют также следующие таблицы тригонометрических функций: таблица косинусов, таблица тангенсов и таблица котангенсов.
Таблицу важно всегда помнить на алгебре, чтобы найти синус.
Всё для учебы » Математика в школе » Таблица синусов углов (градусы, значения)
Если страница помогла, сохраните её и поделитесь ссылкой с друзьями:
Артеріальний тиск — це один із ключових показників здоров'я, який впливає на функціонування всіх органів…
Септики з бетонних кілець є одним із найпоширеніших варіантів автономної каналізації для приватних будинків. Вони…
Сучасні технології енергозабезпечення швидко розвиваються, і серед них гібридні сонячні електростанції займають все більш важливе…
Неправильный выбор триггеров часто приводит к неэффективному расходу бюджета РК. Вместо оптимизации подхода к аудитории…
Renault Captur — це компактний кросовер, який вже встиг завоювати популярність у багатьох країнах завдяки своєму…
Выбор между индивидуальными и групповыми тренировками является важным решением для родителей, которые хотят привить ребенку…